A NEW SYNTHETIC ROUTE TO FUNCTIONALISED TRICYCLO 5.3.2.0^{2.6} DODECADIENES

A.M. Chalmers¹ and A.J. Baker Department of Organic Chemistry, The University, Glasgow G12 8QQ

(Received in UK 18 November 1976; accepted for publication 29 November 1976)

Interest in recent years² in tricyclo adducts of type $\underline{1}$ has prompted us to report our findings in synthesising molecules of this type.

Literature to date has been confined to reactions of tropones ^{2a,b,c,d,e,f,} cycloheptatriene^{2g} and, more recently, the tropylium ion^{2h} with various cyclopentadienes, the resulting adducts being formed by an endo $\sqrt{2}+4$ /cyclo addition. In this paper we wish to report an alternative synthesis of substituted tricyclo $\sqrt{5}.3.2.0^{2}.6$ /dodecadienes which we investigated in the course of work on bicyclo $\sqrt{3}.2.2$ /nonanes³. This synthesis has been achieved for both the substituted and unsubstituted structures, <u>2b</u> and <u>2a</u> respectively.

The synthesis of <u>2a</u> makes use of the known adduct <u>3</u> which has been shown⁴ chemically to have the <u>endo</u> configuration. Reductions using lithium aluminium hydride in ether are known⁵ to proceed without epimerisation of the adjacent asymmetric centres. Thus the adduct <u>3</u> afforded diol <u>4a</u> (97%, m.p. 72-72.5°) which, when slowly added to excess methane sulphonyl chloride in pyridine at 0°, yielded the bis-mesylate <u>4b</u> (96%, m.p. 96-97°). Ring closure was then effected using the method of Bloomfield and Fennessey by <u>in situ</u> replacement of the mesylate groups with cyanide followed, on addition of NaH, by a Thorpe cyclisation to yield the β -cyanoamine <u>2a</u> <u>(68%</u>, m.p. 188°; IR γ_{NUH}^{NUJ} 3460, 3390, 1645 cm⁻¹, $\gamma_{C=N}^{NUJ}$ 2210 cm⁻¹; UV λ_{max}^{EtoH} 263.5 nm (ε 15,000), HCl addition, hypsochromic shift to 238 nm (ε 10,700); NMR δ 1.44 (s, 6H, H₈, H₉, H₁₀), <u>ca</u> 2.2 (m, 1H, H₆), <u>ca</u> 2.7(m,4H, H₁, H₅, H₇) 3.20 (d, J=8Hz, 1H, H₂), 4.24 (s(broad), 2H, D₂0 exchange, NH₂) 7.03 ppm (m, 2H, H₁₁, H₁₂); analysis $C_{13}H_{16}N_2\sqrt{2}$.

For the synthesis of the substituted compound <u>2b</u> we used the benzoate $\underline{5}$ which we reported ^{3a} in an earlier paper as having the <u>endo</u> configuration as shown. We assigned this by NMR (δ 3.66 ppm, s, 2H, H₈, H₉) being aware that the dihedral angle (\emptyset) between the <u>exo</u> proton and the bridgehead proton is <u>ca</u> 75^o and by the Karplus theory⁷ there should be little or no coupling. Anet⁸ in 1962 identified <u>endo</u> and <u>exo</u> adducts <u>6</u> ($\emptyset = \underline{ca} \ 45^{\circ}$, coupling) and <u>7</u> ($\emptyset = \underline{ca} \ 80^{\circ}$, no coupling) by correlation of dihedral angles. Subsequent X-ray analysis^{3b} of the p-bromo benzoate derivative of <u>5</u> confirmed the <u>endo</u> structure.

To avoid complications of comcomitant reduction of the benzoate when the anhydride is reduced, 5 was converted to the corresponding ketal derivative which would be stable to reductive conditions. Thus hydrolysis of 5 with sodium carbonate solution and Jones oxidation of the crude product afforded the keto anhydride 8 /42% (from 5), m.p. 199.5-200.5°; analysis C₁₁ H₁₀ 0₄; IR $\sqrt{\text{KBr}}_{(CO)_{,0}}$ 1867, 1834, 1768 cm⁻¹, $\sqrt{\text{KBr}}_{CO}$ 1697 cm⁻¹; NMR 8 2.57 (q, J=18, 4 Hz, 2H, H_{2a, 4a}), 2.86 (q, J=18,4 Hz, 2H, H_{2s, 4s}), 3.24 (m, 2H, H_{1,5}), 3.96 (s, 2H, H_{8,9}), 6.31 ppm (q, J=5.5, 3.5 Hz, 2H, H_{6,7}). As in the case of benzoate 5 the singlet for protons H₈ and H₉ indicated that the anhydride was in the <u>endo</u> configuration. Using ethylene glycol/pTSA, ketone 8 readily gave the ketal derivative 9 (55%, m.p. 225-226.5°; analysis C₁₃H₁₄0; IR $\sqrt{\frac{KBr}{(CO)_{20}}}$ 1860, 1829, 1778 cm⁻¹; NMR 8 1.67 (d, J=14 Hz, 2H, H_{2a,4a}), 1.99 (q, J=14, 7 Hz, 2H, H_{2s,4s}), 2.02 (s(broad), 2H, H_{1,5}), 3.80 (q, 4H, methylene), 3.98 (s, 2H, H_{8,9}), 6.15 ppm (q, J=5,4 Hz, 2H, H_{6,7}).

Before reduction of 2, it was first converted to the diester 10 [49%, m.p. 89.5-91.5°; analysis $C_{15} H_{20} O_6$; IR $\sqrt[OCHC13]_{COOCH3}$ 1745 cm⁻¹; NMR & 1.71 (q, J=14,2 Hz, 2H, H_{2a,4a}), 1.97 (q, J=14,6 Hz,2H, H_{2s,4s}) 2.86 (s(broad), 2H, H_{1,5}), 3.55 (s, 6H, methyl), 3.76 (s, 2H, H_{8,9}), 3.86 (q, 4H, methyl) 3.76 (s, 2H, H_{8,9}), 3.86 (q, 4H, ethylene), 6.28 ppm (q, J=5.5, 3.5 Hz, 2H, H_{6,7}] by hydrolysis followed by diazomethane treatment. NMR confirmed the <u>endo</u> configuration of the two ester groups and these were reduced with lithium aluminium hydride to yield <u>11a</u> (76%, m.p. 137.5-138.5°; analysis $C_{13} H_{20} O_4$; IR $\sqrt[NUJ]_{OH}$ 3350 cm⁻¹). The bis-mesylate <u>11b</u> [77%, m.p. 106-107.5°; NMR & 2.98 ppm (s, 6H, CH₃SO₂)] and the desired (β-cyanoamine <u>2b</u> [19%, m.p. 149-151°; IR $\sqrt[NUJ]_{NH}$ 3460, 3345, 1646 cm⁻¹, $\sqrt[NUJ]_{C=N}$ 2175 cm⁻¹; UV λ EtOH max 263.5 nm (ε 12,700) HCl addition, hypsochromic shift to 238 nm (ε 8,870); mass analysis⁹ m/e 258.13762 ($C_{15}H_{18}O_2N_2$ requires 258.13682)] were prepared under the conditions described above.

The financial support of the Science Research Council is gratefully acknowledged.

REFERENCES AND FOOTNOTES

1	Present address: Ciba-Geigy Plastics and Additives Company, Manchester M17 1V	ſΤ
2	a) K.N. Houk and R.B. Woodward, J. Amer. Chem. Soc., <u>92</u> 4145 (1970)	
	b) K.N. Houk, L.J. Luskus and N.S. Bhacca, J. Amer. Chem. Soc., <u>92</u> 6392 (1970)	
	c) T. Uyehara and Y. Kitahara, Chem. and Ind., 354 (1971)	
	d) H. Tanida, T. Yano and M. Veyama, Bull. Chem. Soc. Japan, <u>45</u> 946 (1972)	
	e) T. Sasaki, K. Kanematsu and T. Kataoka, Chemistry Letters, 1183 (1973)	
	f) K.N. Houk and L.J. Luskus, J. Org. Chem., <u>38</u> 3836 (1973)	
	g) K.N. Houk and R.B. Woodward, J. Amer. Chem. Soc., <u>92</u> 4143 (1970)	
	h) S. Ito, I. Itoh, I. Saito and A. Mori, Tetrahedron Letters, <u>44</u> 3887 (1974)	
3	a) A.J. Baker, A.M. Chalmers, W.W. Flood, D.D. MacNicol, A.B. Penrose and R.A. Raphael, Chem. Comm. 166 (1970)	
	b) A.F. Cameron and G. Ferguson, J. Chem. Soc. (B), 943 (1970)	
4	K. Alder and H-H. Mölls, Chem. Ber. <u>89</u> 1960 (1956); K. Alder and G. Jacobs, Chem. Ber <u>86</u> 1528 (1953)	
5	V.M. Micovic and M.L. Mihailovic. "Lithium Aluminium Hydride in Organic Chemistry", Serbian Academy of Sciences Monograph, Vol. 237, No. 9 (1955)	
6	J.J. Bloomfield and P.V. Fennessey, Tetrahedron Letters, 33 2273 (1964)	
7	M. Karplus, J. Chem. Phys. <u>30</u> 11 (1959); J. Amer. Chem. Soc., <u>85</u> 2870 (1963)	
8	F.A.L. Anet, Tetrahedron Letters, <u>25</u> 1219 (1962)	
9	A minor contaminant was present formed by the mechanism:	

(m/e 12 requires 247.12083; found 247.12024)