A NEW SYNTHETIC ROUTE TO FUNCTIONALISED
TRICYCLO $f_5, 3, 2, 0^2.5$ DODECADIENES

A.M. Chalmers' and A.J. Baker Department of Organic Chemistry, The University, Glasgow G12 8QQ

(Received in UK 18 November 1976; accepted for publication 29 November 1976)

Interest in recent years² in tricyclo adducts of type 1 has prompted us to report our findings in syntheeising molecules of this type.

Literature to date has been confined to reactions of tropones $z_{a_1b_1c_1a_1b_1}$, cycloheptatriene 2g and, more recently, the tropylium ion $^{\mathrm{2h}}$ with various cyclopentadienes, the resulting adducts being formed by an endo $\sqrt{2}+4\sqrt{2}$ cyclo addition. In this paper we wish to report an alternative synthesis of substituted tricyclo $\sqrt{5.3.2.0^2*}$ dodecadienes which we investigated in the course of work on bioyclo $\sqrt{3}$.2.2 $\sqrt{2}$ nonanes³. This synthesis has been achieved for both the substituted and unsubstituted structures, 2b and 2a respectively.

The synthesis of 2a makes use of the known adduct $\frac{1}{2}$ which has been shown⁴ chemically to have the endo configuration. Reductions using lithium aluminium hydride in ether are known⁵ to proceed without epimerisation of the adjacent asymmetric centres. Thus the adduct $\frac{1}{2}$ afforded diol $\underline{4a}$ (97%, m.p. 72-72.5⁰) which, when slowly added to excess methane sulphonyl chloride in pyridine at 0^0 , yielded the bis-mesylate 4b (96%, m.p. 96-97⁰). Ring closure was then effected using the method of Bloomfield and Fennessey by in situ replacement of the mesylate groups with cyanide followed, on addition of NaH, by a Thorpe cyclisation to yield the β -cyanoamine 2a \angle 65%, m.p. 188'; IR γ_{N-R} 3460, 3390, 1645 cm \cdot $V = N$ 2210 cm ; UV λ max 263.5 nm (6 15,000), HCl addition, hypsochromic shift to 238 nm (E 10,700); NMR δ 1.44 (s, 6H, H₈, H₉, H₁₀), ca 2.2 (m, 1H, H₆), ca 2.7(m, 4H, H₁, H_{5,}H₇) 3.20 (d, J=8Hz, 1H, H₂), 4.24 (s(broad), 2H, D₂0 exchange, NH₂) 7.03 ppm (m, 2H, H₁₁, H₁₂); analysis $C_{15}H_{16}N_{2}$.

CH₂OR 4b R=SO₂CH3 $\overline{3}$

For the synthesis of the substituted compound 2b we used the benzoate 5 which we reported ^{3a} in an earlier paper as having the endo configuration as shown. We assigned this by NMR (δ 3.66 ppm, s, 2H, H_Q , H_Q) being aware that the dihedral angle (β) between the <u>exo</u> proton and the bridgehead proton is \overline{ca} 75[°] and by the Karplus theory^{*'*} there should be little or no coupling. Anet in 1962 identified endo and exo adducts 6 (β = ca 45[°], coupling) and $7 (\cancel{0} =$ ca 80° , no coupling) by correlation of dihedral angles. Subsequent X-ray analysis^{3b} of the p-bromo benzoate derivative of $\frac{1}{2}$ confirmed the <u>endo</u> structure.

To avoid complications of **comcomitant** reduction of the benzoate when the anhydride is reduced, 5 was converted to the corresponding ketal derivative which would be stable to reductive conditions. Thus hydrolysis of $\frac{5}{2}$ with sodium carbonate solution and Jones oxidation of the crude product **afforded the keto anhydride <u>8</u> 42% (from 5), m.p. 199.5** 200.5'; analysis Cl1 HI0 04; IR JE;;)o **11367,** 1834, **1768** cm-', Jg **1697** cm-'; MUIR 8 2.57 (g, J=18, 4 Hz, 2H, H_{2a, Aa}), 2.85 (g, J=18,4 Hz, 2H, H_{2g, A8}), 3.24 (m, 2H, H_{1,5}), 3.96 (s, 2H, H_{8,9}), 6.31 ppm (q, J=5.5, 3.5 Hz, 2H, H_{6,7}). As in the case of benzoate $\frac{1}{2}$ the singlet for protons H_8 and H_9 indicated that the anhydride was in the endo configuration. **Using ethylene** glycol/pTSA, ketone 8 readily gave the ketal derivative 4 **(55%, m.p. 225-226.5); analysis C₁₃H₁₄0₅; IR** $\sqrt[3]{100}$ **o 1860, 1829, 1778 cm : NMK 6 1.67** (d, J=14 Hz, 2H, H_{2a,4a}), 1.99 (q, J=14, 7 Hz, 2H, H_{2s,4s}), 2.02 (s(broad), 2H, H_{1,5}), 3.80 (q, 4H, methylene), 3.98 (s, 2H, H_{8,9}), 6.15 ppm (q, J=5,4 Hz, 2H, H_{6,7}).

Before reduction of 2, it was first converted to the diester 10 $\sqrt{4}$ 9%, m.p. 89.5-91.5°; analysis C₁₅ H₂₀ O₆; IR VCHCl₃ 1745 cm⁻¹; NMR 8 1.71 (q, J=14,2 Hz, 2H, H_{2a,4a}),
1.97 (q, J=14,6 Hz,2H, H_{28,4a}) 2.86 (s(broad), 2H, H_{1,5}), 3.55 (s, 6H, methyl), 3.76
(s, 2H, H_{3,9}), 3.86 (q, 4H, me $(q, J=5.5, 3.5 Hz, 2H, H_{6,7})$ by hydrolysis followed by diazomethane treatment. NMR confirmed the endo configuration of the two ester groups and these were reduced with lithium aluminium hydride to yield 11a (76%, m.p. 137.5-138.5°; analysis C₁₃ H₂₀ O₄;
IR $\sqrt{\frac{NUI}{OH}}$ 3350 cm⁻¹). The bis-mesylate 11b π 77%, m.p. 106-107.5°; NMR 8 2.98 ppm
(s, 6H, CH₃SO₂)⁷ and the desired hypsochromic shift to 238 nm (ϵ 8,870); mass analysis⁹ m/e 258.13762 ($C_{15}H_{18}O_2M_2$ requires 258.13682)7 were prepared under the conditions described above.

The financial support of the Science Research Council is gratefully acknowledged.

REFERENCES AND FOOTNOTES

(m/e 12 requires 247.12083; found 247.12024)

 $\sim 10^7$

 $\ddot{}$